
The Technical Paradox

1



This work is distributed free of charge under the Creative Commons
Attribution-NonCommercial-NoDerivs 4.0 International license. Any required attribution
can be made to the website, where you can also verify your copy of this document and
show your appreciation.

2

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://thetechnicalparadox.com
https://buymeacoffee.com/thetechnicalparadox


Table of Contents

Foreword
Table of Contents
The Paradox

Example: Hooked on a Framework
Is it Possible?

Example: Isolate Technical Risk
Example: Core Features

Who will pay for it?
Example: Optimize for Efficiency
Example: Think big, move fast!

How many will pay?
Example: Bug-Free Software
Example: Weight of Success

Will it generate value?

3



Foreword

This began as an exercise to consolidate my own understanding of a complex side
effect of successful growth. Organizations are strongly incentivized to eliminate friction
over the long term, and yet so much pain feels avoidable or self-imposed. Every
organization that survives expansion over time will hit a point where they must choose
to unwind some deeply-integrated structural, strategic, or technical decision in favor of a
new path. Differing opinions on which key choices aren’t working anymore and when to
tackle difficult problems will rarely come into conflict at a convenient moment. Effort
spent mitigating self-inflicted damage is doubly wasteful, triply if you include damage to
morale, and I believe it can be minimized by sharing responsibility for the practical and
realistic translation from ambition to execution across an entire organization.

My observations are from a decade as a software engineer rising to manager (and
director in a pinch) with primarily two venture-backed companies, joining as early as
seed stage and remaining through post-acquisition integration. I’ve been in the engine
room running too hot and too cool for a wide variety of reasons, and enjoyed objective
success with a hint of regret for unfulfilled potential.

I will frequently oversimplify functional roles to a technical/non-technical binary. This
abstraction is not meant to diminish the complexity of nontechnical roles, which all have
their own unique challenges as well, and is only used to paint a sharp contrast.

While I believe my abstract argument can be generalized to any technical product, I
won’t pretend to have experience with large-scale implementations outside of
fast-paced high-growth software engineering. I’ve tried to remain as tech-agnostic as
possible for the philosophical bits, but illustrative examples will have to focus on
software-specific topics using BuzzyBee, an imaginary organization selling AI analytics
for beehive owners. I have drawn on my personal observations, but they have been
adjusted and exaggerated to highlight specific points; any similarities to people or
software, living or dead, is purely coincidental.

The question everyone should ask themselves of the following philosophy, and all
others, is: what are the specific constraints I face and how might they conflict with best
practices or simple assumptions? The (tragically) correct answer to almost any
question posed to an engineer is: it depends! I hope that keeping this in mind as you
read on will help provoke questions rather than prescribe answers.

4



The Paradox
An organization that derives value from a product with any kind of technical component
must confront a paradox. As demonstrated in software development, technical effort is
most efficiently applied furthest from the point where the benefit is realized; it’s easier to
fix an error with a pencil than a hammer. However, a product must leave the whiteboard
before it can complete the circle of innovation by funding further development. At the
seedling stage, the benefit of technical effort is simply self-preservation by proof of an
idea as soon as possible. Otherwise, a perfectly good rocket ship might never make it
off the ground. It’s easy to feel both efficient and agile in this environment because
success is measured in survival, future be damned! A small team can sketch out a
large idea on a blank canvas, and survival instinct multiplied by the euphoria of infinite
possibility becomes a runaway train of technical decisions. When success arrives,
typically as injected capital, it comes with new goals and constraints and technical
organizations should quickly recalibrate their strategy and tactics to match the new
challenges. By surviving over time, the path to success becomes more clear and they
must consider which choices they made to survive until now will become obstacles.
This pattern of developing technology or products, securing capital, and refining
strategy repeats many times over an organization’s life; each cycle is an opportunity to
choose a new balance point between short-term speed and long-term efficiency.

Technical products are additive and intertwined. Each component has strengths,
limitations, dependencies, and eccentricities which quickly render an aggregated
technical product unique. Every choice will affect future choices, to varying degrees,
and foundational choices are likely to be the most painful to unwind. Compounding this,
as a product scales up and time passes, the oldest technical choices are more likely to
be found inefficient because they were made with the least clarity of how they would be
used in the future. Few components of a complex system can handle all future cases,
scale to infinity, perform self-maintenance, and upgrade themselves. Each addition to
a product introduces new constraints and complexity, often called technical debt, and
can be quantified as a future operating cost plus risk. Despite the baggage the term
carries in the context of software engineering… “technical debt” remains an accurate
description of the accumulation of the unintended effects of technical effort. The side
effects of technical debt aren’t exclusively technical; an organization can become
distorted and inefficient if forced to mitigate weaknesses of a product.

Some debt is unavoidable, as in cases of survival, but more often it is chosen by an
organization for valid reasons. Just like financial debt, technical debt represents a
gamble that an immediate outcome is worth more than a deferred but typically
increased cost. This can be a good strategic choice and all healthy organizations must

5

https://www.researchgate.net/figure/IBM-System-Science-Institute-Relative-Cost-of-Fixing-Defects_fig1_255965523
https://www.researchgate.net/figure/Cost-of-Fixing-a-Defect-10_fig4_228658128


learn how to manage their debts. The critical difference is that where financial debt is
borrowed money, technical debt is borrowed time. Any choice that saves time by
conceding quality will confer additional risk and/or difficulty to future work in the same
area of a product. Make no mistake, it is normal and healthy to carry some debt as a
result of failed experiments or to accelerate growth! Strategic financial and technical
debt can both amplify growth more than the cost of the debt, and both become equally
unhealthy when ignored. In the case of technical debt, it can be tempting to skip paying
it down because the carrying costs aren’t easy to compute and root causes are opaque.
Furthermore, technical teams don’t always formulate strong non-technical arguments for
future effects and blast radius of debt or worse, muddy the waters by labeling their own
failures as debt. Over time, debt can distort an organization by gradually raising the
criticality of low-value outcomes and forcing decisions which over-invest in solving the
wrong problems. This is a root cause of a culture that distrusts management. Once an
organization falls behind in this way they must work twice as hard to get back on track,
inevitably slowing growth.

Just as carrying financial debt would be punished by compounding interest, technical
debt compounds by reducing efficiency of effort. Coupled with pressure to meet a
short-term goal, technical teams are forced to work harder to deliver less long-term
value. This pressure can be induced by increasing technical capacity too slowly to meet
demand as well as by becoming too complicated too quickly without reinforcement.
Eventually, deferred annoyances will suddenly become blockers and unexpected work
will creep into every project, delaying key features or shifting even more debt around.
Technical teams will spend a larger proportion of their time doing maintenance, or other
required work that keeps the lights on without advancing any particular goal. Similarly,
problematic areas of a product will throw off a steady stream of issues that drag
technical staff away from immediate objectives. More financial debt than ability to pay it
consumes all capital and triggers bankruptcy. More technical debt than ability to correct
it consumes all of an organization’s time and halts progress. If the misery of drowning
in debt while being co-signed on for even more leads to the exit of staff most critical to
addressing the problems, the organization is doomed.

The currency of technical debt is time because deep technical expertise, especially
domain-specific knowledge, takes time to acquire. Large problems require multiple
people, and technical teams take time to develop a shared understanding of what
they’re solving for. Complex products are all unique, so even the best technical staff will
require inestimable time to perform major changes to an operational product they’re not
familiar with; never undervalue practical knowledge gained by evolving with a product
and maintaining it. Continuity of shared expertise in a specific product area significantly
increases success and speed by better translating organizational goals to viable

6



technical outcomes as well as avoiding traps. This also helps an organization repay
technical debt more strategically by, for example, working on faulty components
adjacent to current objectives. One of the best ways to build expertise is by having a
team work off some technical debt!

Veterans of scrappy startups on tight burn rates will recognize the pressure to deliver
minimum functionality yesterday, with symbolic-at-best concern for long-term viability
and dismissive acknowledgment of the future effort required to maintain, monitor, and
scale the system. Technical staff forced to rebuild a component before deriving enough
value from it will gripe: “there’s never enough time to do it right, but there’s always
enough time to do it over!” This is fertile ground for a culture of furiously bolting
components together to reach as high as possible before the product tips over, and isn’t
necessarily recoverable. Failing to adequately understand technical debt before
acquiring it is just as unwise as agreeing to financial debt with unknown terms. Digging
in their heels to resist the impact of bad technical debt, technical staff might demand
perfect requirements, de-risk projects by over-prototyping, and disproportionately
escalate annoyances. While these are all shadows of the solution, they create
frustration for everyone and are ultimately counterproductive because they lose the
nuance that some technical debt is good, and that some features can be suboptimal
because they’re not strategic despite their criticality. Deliberately choosing how much
debt and where it lives should be an obvious goal for all organizations.

Do not despair! Balancing the terms of debt against importance to future organizational
goals is a central conflict in technical organizations, but if resolved… agility and
efficiency of a small organization can be preserved at later stages of growth, with the
accompanying effect on profit margin and valuation. Instagram was worth $1billion with
13 employees operating under viral load at global scale. Minimizing friction will allow an
organization to approach maximum potential. An organization must evolve plans that
anchor realistic short-term outcomes to clear and shared strategic objectives. When
strategic objectives change, so must any current plans in lockstep with internal goals
and external expectations.

Every organization will be on its own unique journey, but there are at least 4 key
questions that must be answered along the way. In a startup backed by venture capital,
each question’s answer is typically required to unlock the next round of investment and
phase of growth and represents an inflection point in the organization’s life:

- Is it possible?
- Who will pay for it?
- How many will pay?
- Will it generate value?

7

https://www.businessinsider.com/instagram-employees-and-investors-2012-4
https://www.businessinsider.com/instagram-employees-and-investors-2012-4


Technical debt is a recurring theme throughout all phases, but not the only type of
decision that reverberates in an organization or product. How tradeoffs evolve
alongside a growing organization cannot be addressed further without putting them in
context of a more specific moment. Subsequent chapters will address the varying
balance of short-term pressure against long-term success of a technical organization,
as well as explore how technical organizations must adapt in the face of growth and
success.

Example: Hooked on a Framework
A hot new startup, BuzzyBee, has developed AI that ingests sensor data and produces
reports with suggestions regarding beehive health. The idea for the company spun out
of some interesting findings during post-doctorate lab work, so the founders are just
starting to figure out how users will want to consume and operationalize this data.
BuzzyBee knows they will be doing a ton of experimentation, and must be
correspondingly agile and flexible while making data available in a backend API for a
mobile application.

They found a great open source library, InstantAPI, that can auto-generate the backend
APIs and documentation! The CTO has played with it a bit enough to be satisfied that
all you have to do is point it at a table in a database, and InstantAPI generates
endpoints to create, read, update, delete, and filter the data. It’s obvious this will save
BuzzyBee a ton of time by letting them focus on their users and not waste time
plumbing data from backend to frontend.

This is a rather reasonable technical choice for a prototyping startup, and takes
advantage of a neat trick: auto-magical translation of a database table’s schema to a
functional set of backend API endpoints. Frameworks or tools that abstract details and
leave the developer to fill out boilerplate, like InstantAPI, are incredibly powerful and can
help a small team produce a ton of functional output by leveraging other developers’
clean solution to a generalized problem. However, technical teams should always be
wary of reliance on a framework’s happy-path solution; by the time the product reaches
a level of complexity which requires a solution the framework doesn’t support, how
deeply integrated will the framework be in the design and architecture of the product?
Which other components and frameworks have been designed around the assumption
that all API endpoints will work like InstantAPI does? Have developers figured out how
the framework works under the hood and what might break it, or do they use the
features that work well and ignore the rest because everyone was excited about a

8



demonstration? How many deadlines on the roadmap rely on copy-paste-find-replace
of similar InstantAPI endpoints and can’t afford either a deviation from the pattern due to
new complexity of a feature, never mind a delay to build a better pattern?

Reliance on InstantAPI is hard to escape if the cost of researching and establishing an
alternative remains higher than the cost of losing time on the next new feature. As with
all forms of technical debt, it will cost increasing amounts of time to pay it later; when
does the benefit of taking the debt outweigh any individual feature? If development of
many new API features are hindered in some small way by a framework, then for a
large enough organization that will be the same amount of effort to fix the problem. This
may be the tipping point in cost-benefit, but for a framework embedded deeply enough,
the loss of efficiency during heavy growth can outstrip the early benefit.

The solutions to BuzzyBee’s InstantAPI problem are numerous, but they all take time;
what if the damage is already done? With a data model and query pattern locked to a
database schema, complex queries against millions of beehives’ data will slow down;
first at the extremes with the heaviest users, then most users for short periods, then all
users at once. Developers that have only used InstantAPI might not have a
replacement ready to go, and will require time to research a new approach to solve the
specific problems BuzzyBee now faces; how will this change to a fundamental
component cascade into other components? Quick fixes may stem the bleeding, but
how many poorly tested band-aids will be necessary under greater and greater scale?
The more critical a problematic framework or tool is, the more likely a deficiency will
torpedo forward progress of an organization for a few quarters. Bees deserve better.

To estimate the problems of a framework, look first to the details that are abstracted
away. InstantAPI detects tables of data, the datatypes of tables’ columns, and links
between tables from a well-defined schema, then exposes all of it in largely the same
way. Take an adversarial mindset and ask, what would be difficult for this framework to
handle? Imagining some of the paths that the product could take, do any features rely
on that operation or datatype? BuzzyBee doesn’t know which user events will need
tracking so they might decide not to define a schema for event tracking, and instead let
each event type use JSON column types as it sees fit. InstantAPI, designed for
prototyping and expecting mostly integers and text, might not provide the same JSON
filtering operators offered by the database without extra complexity. At first, this isn’t so
bad because the power of the database can brute-force through hundreds of users and
thousands of events. After millions of users and billions of events over years, will the
same queries still be performant?

9

https://en.wikipedia.org/wiki/Bee#Role_of_bees
https://en.wikipedia.org/wiki/JSON#Syntax


If scaling up is the trigger for a problem like this, the pain will be significant. While the
balance of when to sacrifice convenience for efficiency is always shifting, the best early
warning signs will come from the technical team using the tool or framework every day.
Look at the common causes of delays in active development and listen to where they
overlap with the grievances of technical teams. Monitor and parameterize what light
and heavy usage looks like, and observe how failures cascade through components. To
solve a problem, the organization must first understand and describe it.

10



Is it Possible?
The smallest seed is at the greatest risk. Few outside the organization understand the
vision, and fewer believe in it. The runway is measured in months or weeks and the
team can still split two pizzas. It would be foolish to pretend that anything other than
survival should drive an organization’s strategy at this moment. With this simplicity
comes a great deal of clarity, because there’s no product for a growth engine to
squeeze for revenue, external investment is only looking for proof of life, and a nascent
vision is not yet anchored to reality. Technical staff must seemingly answer only one
question: is it possible?

Tunnel vision might help clear this gate, but why bother if it’s at the expense of clearing
the next? If the goal is to eventually extract value from ownership or membership, then
surely it makes sense to consider how to go the distance, even at this fragile stage!
Frankly, a polished demo can make anything look like a good idea, but it’s worthless
until sustained execution produces something tangible. Clarifying a strategy and plan to
execute it is just as important as proving it’s possible by developing a messy prototype.
These efforts should even help refine each other, because the capabilities
demonstrated by the prototype should inform the vision as much as the vision drives the
prototype.

The Technical Paradox tells us the pressure of survival is hostile to robust products, and
without any clear sense of the long-term plan there is nothing to guide technical
tradeoffs. If decisions cannot be weighed against a specific desired future, immense
amounts of technical debt can collect in plain view. Under these conditions, very little
output is likely to be useful in the long-term and this fact should be embraced across the
entire organization. Technical staff should be free to cover a lot of ground and bump
into many of the problems they’ll need to solve once survival is achieved, especially
scaling concerns, and be unbothered by design errors made by solving problems
serially in the order they present themselves. They must also resist the temptation to
optimize; overengineering prematurely can feel like a good investment, but decisions
will lack useful information gained by observing over time. The resulting prototype is
likely to be an awful foundation for a large product. However, by the time a prototype
does its job as proof-of-life an organization should know what a better foundation would
look like. Most importantly, everyone should also be in agreement on which bits of a
prototype can be reused, if any, and which need to be rebuilt first.

If the technical product of this stage is effectively throwaway, then what should the
organization be focused on beyond the minimum goal of survival? An organization will
weaken over time if they do not take this opportunity to build a shared understanding of

11

https://www.luisazhou.com/blog/startup-failure-statistics/#:~:text=Approximately%2030%25%20of%20new%20small,first%20five%20years%20of%20operations.


all challenges facing the idea, both technical and non-technical. Coalescing around a
problem for the first time may be uncomfortable; it will require technical staff to give up
beautiful designs for whatever the market demands, and non-technical staff must learn
enough about the problem being solved to anticipate where difficulties will lie. A good
plan won’t be a straight line from prototype to fully-fledged product, and should
acknowledge where the vision and plan is clear as well as where it isn’t. Only then can
technical teams understand which technical components will be strategic and which can
be rudimentary, where estimates must be precise and where they must be accurate,
where to invent and where to keep it simple. An organization will not survive this first
and riskiest phase without forging a clear vision, but to minimize future friction they must
also produce a lucid technical plan for a product that can drive into market.

The organization must also prepare for growth to support the strategy they’re choosing.
In a small organization, it is table stakes that the Why and the What are clear, but
growth obliges the How to be decided more frequently by people with less institutional
knowledge. Any time spent rediscovering information previously known to an
organization is wasted, so an organization must decide how they will preserve
knowledge gained by multiple people over (hopefully) several years. Time is still far too
precious to spend updating documents alongside changes, but organizing and
preserving decisions alongside their justifications at a point in time will be critical for new
team members to make wise decisions in the next stage of the organization’s life.

No matter how unified, each prototype, first technical plan, and growth strategy will have
to adapt to results and reality over time. Complexity is the enemy of flexibility.
Prototyped components are easiest to swap out when they do a simple thing well. Each
milestone with dependencies in a technical plan is a risk of delay and failure. Allowing
key people or roles to be overwhelmed by unbalanced growth will add a ton of friction to
early momentum. Minimal is usually simple.

Example: Isolate and Document Technical Risk
Data models are a foundational design element, so it makes software engineers deeply
uncomfortable to slap a bunch of disorganized data into a structured database. They
might still find a way to make an intelligent schema out of it, but maybe not. This is a
solved problem though; unstructured data sounds a lot like a schema-less database!
This might also be a mistake because losing control over data quality from the first
record will hinder the organization’s ability to interpret product usage data… It doesn’t
feel great to engineer anything when there are multiple valid approaches and no way to
know which will be right or wrong.

12



But the pressure is on, and the only wrong decision is indecision; engineers should
simply make the most convenient and inexpensive choice for themselves. Let’s say the
team is most comfortable working quickly with a common relational database, and
integrates it into the prototype. The trap is laid; it’s easy to forget that a foundational
choice was arbitrary once many other components depend on it. How much
schemaless data will be buried in a structured database before the organization feels
enough pain, and how much more effort will it take to unwind the mess? The risk is
especially high for a component that affects all others, like a source-of-truth database.

BuzzyBee’s CTO receives positive feedback from early demonstrations of the beehive
AI, but users want to play with the data on their own instead of riding along on a screen
share. BuzzyBee decides to put a copy of the CTO’s personal beehive data in the cloud
and record how users interact with it. This means they’ll need at least three
components: authentication/authorization, a backend API to filter data in the database,
and storage for event tracking.

In the long term, these three types of data probably won’t all share the same access
pattern. BuzzyBee’s CTO is especially concerned with handling real-time sensor data
and a current imprecision around the data required in event tracking, but doesn’t really
care about solving these problems right now. They don’t have the luxury of bandwidth
to monitor, maintain, and optimize multiple databases anyway! At current scale,
BuzzyBee shouldn’t bump into any resource limits or read/write efficiency issues. So
they decide to focus on unlocking the core business case of enabling user
demonstrations.

Given the team’s familiarity with VanillaSQL, simplicity of set up and management, and
support in many programming languages, BuzzyBee’s CTO decides it makes sense to
use VanillaSQL for these early experiments. They stand up one instance of it and put
the data from all three components in it. Stepping back a bit, they consider the vague,
but still imaginable future. BuzzyBee knows they’ll need different solutions for at least
sensor data and event tracking later, so they make sure to put some structure around
isolating each component’s usage of this shared database.

The team agrees to the following principles (and writes them down) to maximize current
velocity but also guard against painting themselves into a corner:

- Clearly label schema and tables used by each component
- Draw a clear boundary around each component’s data
- The CTO requires a way to provide a dump of sensor data to seed the database,

and then update it periodically to match a curated dataset.

13



- Make sure that this operation is repeatable and resilient against duplicate
data.

- When this action becomes more frequent than weekly, discuss how to
automate it and then eventually upgrade it to the permanent version. Not
now though.

- The quality of the sensor data is fundamental to the application, so enforce
constraints, foreign keys, etc to make sure the backend developed on top of it
makes valid assumptions.

- Allow the event tracking to use flexible JSON data types, keep it simple and let
the backend decide how to manage this data for now.

A small team of people with experience using a tool or technology can likely produce a
plan acknowledging nuance like this with a few hours of meetings and a whiteboard.
They could also get to a similar outcome by having an engineer just go for a simple
solution, but the key difference is that discussing it as a group yields a shared
understanding of the tradeoffs and, critically, a written record of why the decisions were
made. In a year, a new team of engineers looking to make changes to solve new
problems can operate with confidence that they’re improving a system that has known
weaknesses rather than stumbling into a minefield of secret requirements and hidden
assumptions.

Example: Core Features
BuzzyBee will need to identify its users so, like most applications, it will have some kind
of authentication feature. Username/password authentication is easy to build,
especially with a database already implemented in the product. The first external user
demo is on Thursday; no problem! By Wednesday the team has whipped up a simple
user creation and login flow, and the demo goes well.

Three weeks later, the first request for a user to reset their password comes through.
The team manually updates the password, and decides they must add a way to
automate this process. Again, no problem! The product was going to need a way to
send automated emails to users anyway, and the team adds a “request password reset”
feature to the login flow easily. Later, when a new team member goes to add the
automated reporting feature they discover that the implementation of email cuts corners;
this makes sense given the simplicity of the only existing requirement. However, the
developer must take extra time to decide if the new features should work with or replace
the existing one and thus an afterthought in the authentication feature has caused extra
time in the reporting feature.

14



Three months later, a forward-thinking user sees the value in the beehive AI and
negotiates a reduced price in exchange for feedback as a beta tester. The first
customer! As part of drawing up a contract, BuzzyBee’s lawyer advises adherence to a
common security certification which requires an audit. The audit takes a week or two,
and finds another week or two of work with low apparent value to the product. The time
invested in upgrading the authentication system has already surpassed the time it took
to build it.

Three quarters later, a paying customer wants to give read-only access to an intern on
their team. The authentication system has never provided granular authorization, but
this seems like a feature that the highest-paying customers with the most beehives will
likely also want to take advantage of. Given the adjacency to security, this is something
that should be done absolutely correctly and the team wants to replace it with a
commonly used third party component. BuzzyBee is already sacrificing delivery of
another feature to design an authorization feature that meets customer demand, so it’s
not tenable to consider losing even more time to replace it at this time.

Three years later, BuzzyBee is a market leader in beehive analytics but the
authentication system is struggling to keep up with the load. Optimizations are stacked
on top of optimizations inside the auth service, with no clear indication of when the well
of hackarounds will dry up. This poses a huge and likely intolerable risk of sudden
interruption to the product. Luckily, a collapse is preempted by other factors. The
organization wants to split customer data across multiple clusters to alleviate scale
issues in other components, but authentication is designed as a singular source of truth
and would cause chaos if copied across clusters. The data migration to a new system
will be difficult and intricate, but finally BuzzyBee decides to invest in using a third-party
auth service that can be shared across multiple clusters. Using a better auth
technology in a different architecture ends up solving multiple performance issues
across the entire application, and BuzzyBee celebrates a pyrrhic victory in a battle they
could have avoided completely.

It should have been obvious from the beginning that authentication and authorization
are critical features; 100% of users will use the authentication features for 100% of their
product interactions. If auth wasn’t such a boring, table-stakes feature, it would be
obvious that it should be the first component in an application to be future-proofed. In
survival mode, this seemed like such a reasonable decision to do a quick-and-dirty
implementation, but was it worth it to skip consideration of long-term design goals?
Could that first user demo have waited a week for the team to consider the limitations of
a prototyped component and budget replacement into the plan? At the other extreme,

15



how long would the first user have waited before they lost confidence in BuzzyBee and
moved on before the bulletproof authentication solution?

16



Who will pay for it?
Armed with a vision, a plan, and some investment, an organization is ready to increase
headcount as it seeks product-market fit. This is a key challenge for technical groups
because technical expertise takes time and a large influx of new team members require
support to become effective and meet a correspondingly increased demand for product
features. Simultaneously, for the first time technical teams will need to stop bolting onto
the prototype and consider that eventually the organization will value stability and scale
more than completing current projects. On one hand, the organization will choose to
build components of the product that should be permanent and thus will require
precision and time. On the other hand, an organization with a plan embracing the
unknown should expect chaos as the price of agile experimentation. The tension
between agility, stability, and self-improvement renders organizations especially
vulnerable to themselves while grasping for product-market fit. Any unresolved
disagreement about which tradeoffs to make will be most damaging at this moment;
technical teams will mismatch time invested with strategic importance and produce
flimsy foundational components or over-engineer minor features. These issues will be
amplified by organizational growth, as new team members inherit disagreements
without understanding their source or having the power to resolve a conflict.

Externally, success in this phase is simply provable product-market fit. However,
long-term success will require the ability to improve and deliver the product at scale. If
an anticipated or confirmed product-market fit can’t be delivered at scale to meet growth
expectations, what’s the point of building a product to fit that market? No doubt this is a
moving target, but as an organization matures through this stage the target should
begin to stabilize; an organization must acknowledge that their goals are still in flux, and
spend precious time efficiently by working where the goals and requirements are
currently most clear. Even where goals aren’t clear but time must be invested anyway,
peering beyond the horizon can still provide focus for immediate goals if it narrows the
scope for a long-term technical solution.

Given a technical roadmap informed by the prototyping phase and some feedback from
the market, an organization can begin to invest time more wisely; it is critical to spend
an amount of time designing a component commensurate with the longest possible view
of its lifetime. That is not to say that all aspects of the design must be built, but if a
component is the axle to a product’s wheel, then it should either be future-proofed for
anticipated growth or designed to be easily swappable for a better version when
necessary. Conversely, if a component is there just to check a box but isn’t key to the
product or growth, then very little time should be spent imagining the far future of it.
These choices aren’t always aligned with the simple or instinctive choice, so the Why is

17



increasingly important. Unlike prototyping, most of the choices made in this stage will
reverberate for years so technical debt must be chosen extremely carefully at this point.
Often, the effects of these choices are subtle and rely on intuitive knowledge of the
problems as well as how any existing components are solving them.

The technical paradox makes it clear that the early stages of product growth is where
design choices are most impactful to the long-term outcome. This is one reason why it’s
important to shift the paradigm of decision-making immediately upon receiving
investment. People with the most knowledge of key components can be tempted to
work alone, citing efficiency and speed, but will likely continue to increase the opacity of
the outcome. Similarly, handing off proof-of-concepts to a new team member can feel
like delegation, but it doesn’t help new team members absorb the problem enough to
intuit solutions to unforeseen problems. Inevitably, sketches of ideas lack depth and no
matter how good a team is at painting inside the lines they will miss unstated or
unknown requirements. In this stage, technical organizations can only grow sustainably
to meet full potential if they prioritize developing the capabilities of the team over the
capabilities of the product.

Failure to do so ends with a fixed set of experts obligated to provide knowledge to a
growing majority of low-capability teams. If experts are stretched too thin, management
is forced to make an ugly choice far too early: should a unique expert be deployed on a
single critical project but risk failure elsewhere due to lack of key information, or should
an expert be spread across many projects but risk being ineffective for all of them?
These options sound like technical debt because they sure are; resource constraint is
the easiest reason to take debt too early and will flatten the exponential growth that this
phase aims to unlock. Despite the external pressure to demonstrate product-market fit,
a small organization must lay a strong foundation for structure, process, and culture that
will be capable of delivering the vision while they’re still figuring out exactly what the
product should be.

Specifically, this means creating an environment in which new team members can
quickly become effective, as well as guardrails that prevent them from violating key
principles of components’ design or their role in the long term plan. That foundation
might be best laid by hiring only elite candidates, but this is a dangerous strategy to
stick with because it’s unsustainable at scale. If an average or junior technical team
member can’t be effective in the organization, then the organization’s work throughput is
capped by the number of perfect candidates they can find and afford to hire. Despite
the appearance and discomfort of slowing down work on critical product features,
investing in keeping everyone moving in the same direction will yield huge gains; it is
the responsibility of leadership to teach, not simply direct. Only then can an

18



increasingly large organization consistently produce technical outcomes that will save
time during exponential growth instead of waste it, allowing the organization to reach
maximum potential.

A common choice made at this time is to build or integrate various components.
Building a custom component takes time and carries risk, but unlocks deeper
customization and is generally where innovation can happen most efficiently.
Integrating a third party’s component isn’t always cost-effective, but the abstraction of
an entire problem or domain typically saves a lot of complexity and maintenance and
thus is often good technical debt… but only if it can be isolated with an eye toward
suddenly needing to be replaced for non-negotiable reasons in the future. Zoom out a
bit and this isn’t terribly different from how an organization should treat the components
it builds; trusted design goals for components include separation of concerns,
failure-tolerant interfaces between components, and simplicity wherever possible.

If all goes well, the organization will build their own repeatable process to deliver
components of the product around about the time that customers also start to see value.
This is the last good opportunity for a technical organization to set design patterns,
institutionalize product testing and monitoring, and smooth the logistics of delivering the
product to customers. The next investment triggers explosive growth, both of the
technical organization as well as the marketing and sales engine that drives customers
to the product. The exponential growth itself will also put a lot of pressure on the
product, making it increasingly difficult to delve into the inner workings to address key
bottlenecks or continue to innovate. With growth comes entropy, and so this stage is
the last moment that an organization can exercise strong control over the technical
foundation the product is built on. Any investment past this point will come with high
expectation of return, and a need to demonstrate consistent exponential growth will
weigh heavily against technical concerns.

Example: Optimize for Efficiency
BuzzyBee is expanding their beta program, and the marketing team has driven a few
leads into the sales funnel. These potential customers look a bit different than the
current beta customers; they have many more hives across more locations so they have
a very different use case for the product. Despite concerns about the effort required to
meet their demands, these large customers have a lot more money to spend on
software services and BuzzyBee wisely chooses to explore the opportunity!

19



In the face of uncertain product-market fit, it is tempting to shift the focus of the technical
team toward a new potential market. This would accomplish the immediate goal of
non-technical teams choosing a path forward, but has the side effect of making a mess
in the workshop where technical teams continue to deliver and maintain the product.
BuzzyBee’s technical leadership doesn’t feel they have enough information about the
future direction to make architectural decisions, so they accept the chaos and embrace
100% investment in innovation to see if they can unlock large customers. For a short
period of time, deploying all technical resources to an extended hackathon isn’t
necessarily a bad idea, but it is still a survival-mode reaction to a nuanced opportunity.

BuzzyBee’s mistake in this decision is forgetting that they’re not working on the
prototype anymore. There are a ton of problems a software organization needs to solve
that aren’t specific to the product; an organization must deliver the product to customers
and address issues with functionality as they arise. How is it deployed to production?
How are defects and accidents prevented? How will the organization know if the
product is working correctly? What features will internal sales and support users require
to administer the product? These are all opportunities for a technical team to make
progress on projects where the outcomes are more clear because they’re more generic.
If designing the data/AI pipeline is impossible because BuzzyBee doesn’t have enough
information about the workloads it must support, then time would be spent far more
efficiently building the CI/CD pipeline that will support all current and future projects, or
building a common pattern for components to monitor and report their own health to
proactively identify problems. Infrastructure, Developer Operations, and Business
Operations all describe tons of work with simple base requirements that can make an
immediate and lasting impact on the throughput of technical and non-technical teams.

Unfortunately, BuzzyBee gets excited about the new large customer segment and goes
all in on chasing functionality to close these deals. It works, and a year later BuzzyBee
has exceeded all the revenue targets despite many failed experiments. However,
defects and downtime are a frequent occurrence because of the under-investment in
infrastructure and stability supporting the development teams. BuzzyBee decides to
invest in monitoring to prevent backlogs in data processing pipelines, but the cost to do
so is far higher now; in addition to creating the solution, technical teams must also figure
out how to inject the solution into components that may never have considered this
requirement as part of their design. If ensuring visibility into functionality was a
requirement from the beginning, components’ designs might handle this challenge more
elegantly and have saved technical effort. In the worst cases, components may not be
able to adapt to a backward-applied pattern for monitoring application health;
organizations will be forced to choose between even more expensive investments or
skipping monitoring in problematic areas.

20

https://en.wikipedia.org/wiki/CI/CD


If BuzzyBee’s technical leadership had instead resisted the demand to over-deploy
teams on effort with unknown reward, they might find that solving the problems common
to all software development projects accelerates research as well as reduces the side
effects of experiments gone awry. New team members added toward the end of this
phase will become more effective more quickly and, taken together, all these gains in
efficiency could have primed BuzzyBee to enter explosive growth at a far higher speed
at the cost of spending slightly less effort on new development.

Example: Think big, move fast!
BuzzyBee has passed fifty customers, and all of them rave about how predictive
analytics is increasing both honey production and crop yields. A few smaller customers
have left, having made big improvements from six months of product usage and
learning how to do better by themselves. BuzzyBee is close to product-market fit with
customers who manage 10-100 hives, and the organization chooses two clear
objectives to improve the product while retaining more users.

Objective 1: Improve analytics even further from customer feedback. The newest
engineering lead used to work for BigCloudCorp, so they’re primed to help upgrade the
sensor data collection and analytics engine. The backend team designs a real-time
data pipeline that collects key beehive data with sub-second granularity, and with even
more data the AI team tunes their algorithms for rapid response. Customers are
impressed by the results, and cutting edge technology helps BuzzyBee close deals with
larger and larger customers… until the data pipeline starts falling behind real-time one
day. The newest customer is one of the largest honey producers in North America, and
has a hundred times the number of hives as the next-biggest customer. The backend
team is shocked, they never considered that this much throughput could come from a
single customer and a pipeline component is failing. The easiest solution is to reduce
the sample rate from ten milliseconds to ten seconds, 1000x slower; it reduces the data
size back to what the data pipeline can handle and might even make smaller customers
run faster as well… until the AI team starts reporting false alerts are firing to all
customers; they’ve spent the last nine months optimizing the algorithms to pick up on
tiny fluctuations in hive data and data points every ten seconds have a much larger
variance.

Objective 2: Make the product stickier by adding hive management features so
BuzzyBee becomes a key tool and not just a source of information for customers. The
product team thinks a workflow management feature will drive engagement to the
application; help customers assign daily maintenance tasks to their employees, who
then record results and log events in the application. The best part is, it’s simple to add

21



since it’s very similar to existing endpoints making data accessible to other components!
User engagement in medium-sized customers skyrockets immediately! However, the
smallest customers are one or two people using pencil and paper. The largest
customers have purchased other software for this purpose; the software is both already
operationalized and way more feature-rich than BuzzyBee’s management tools. Six
months later, BuzzyBee finds product-market fit as a pure analytics product for large
customers and further development on the management feature that medium customers
love is abandoned. However, the cohort of customers using it will leave if it’s removed
so the organization makes the obvious choice of leaving it in place… until the database
starts alerting; the write operations from legacy customers are blocking write operations
from the AI engine from the influx of large, new customers.

Both objectives began with a completely reasonable idea, but cascaded into conflict
between key technical components. Each choice was justifiable in the moment, so is
there fault to be found in either case? Perhaps not; building a product is messy, and
dead ends are impossible to avoid completely. An organization must learn to keep track
of the side effects of experimentation and predict messy problems. If anything,
BuzzyBee should have reacted more quickly to understand the unknown risk of
assuming key components will scale in ways they weren’t necessarily designed for.
Beware: complex problems with intermittent warning signs are easily ignored when
they’re attached to general success.

22



How many will pay?
Everything is starting to click. The growth engine is cranking out new customers and
current customers are increasing usage as they integrate the product more tightly.
Financial projections are right on target for maximum valuation, and success is around
the corner! All the organization needs to do is capitalize on this momentum as they
make their largest relative gains in market share, before settling into stable growth
typical of a large enterprise. The organization is simply not a scrappy startup anymore,
so the product is expected to work reliably by now. The train is rolling in the right
direction, and fear of screwing it up can begin to creep into decision-making. Even
though demands on the product are increasing dramatically, the organization’s tolerance
for technical issues that impede growth is reducing. The equilibrium has shifted across
the pivot point, and stability is becoming more important than agility. While this is a side
effect of success, it typically doesn’t mean that technical staff can relax; the expectation
is that growth will continue to accelerate! However, the product will experience an
immense amount of pressure due to scaling up, and the worst technical debt is likely to
be exposed now. Unknown debt is especially likely to come due in these moments,
when expectations change more quickly than technical groups can react. Awareness of
potential issues gained from clear decisions and tradeoffs in recent history will go a long
way toward predicting issues and mitigating them before they become showstoppers.

In addition, explosive growth will also place a lot of pressure on the technical team.
Demand for technical effort is increasing to match customer growth, and the technical
team will add headcount to meet it. This poses a few new problems, most notably that
the impact of an individual’s technical contribution weakens relative to a larger and
larger organization. Similarly, growth always (temporarily) dilutes institutional
knowledge. Where a team could previously rely on a small group of experts to tackle
the thorniest problems, the product is ever-growing and simply because of size and
complexity there will be a higher quantity of critical issues. The viability of the technical
team under heavy growth is directly linked to its ability to make new team members
effective. The ability to absorb new people into a culture and technical product’s
ecosystem is an obvious, but frequently unstated, assumption of a plan to meet
exponential growth in customers. Poor documentation of previous designs and
tradeoffs, lack of guardrails, and lost knowledge will all be exposed. Goals missed for
these reasons represent paying off interest, not principal, on technical debt of
yesteryear; too much debt will be a drag on the whole organization, not just technical
staff working on the product. Pay close attention to common themes of failed projects,
and ask: how much unpredictability can the organization tolerate in any project that
touches a problematic component? Continued growth will likely only make it worse.

23



Taking these organizational and technical factors together, this is a seismic shift from
the previous phase; the balance of agility OR resilience suddenly becomes a mandate
of speed AND stability. A technical organization unprepared for this moment risks
drowning in issues du jour because they haven’t invested enough in discovering the root
causes, are too busy to help new team members to increase capacity, and too
frustrated to work with nontechnical groups to negate problems with creative solutions.
The biggest challenge for the organization is how to prioritize and allocate technical
effort, because the balance has swung from risk-tolerant to risk-avoidant. Simple
additional features are easy to justify to customers or non-technical teams, and can be
very effective drivers of organizational goals while still feeling low-risk. By contrast,
complex surgery in core components addressing technical debt can potentially solve
several problems across several components all at once but is generally high risk. How
can decision-makers choose well, especially when the organization’s size means
deciders are typically not informed by direct involvement in execution?

A primary source of difficulty is that technical teams are notoriously terrible at justifying
effort to pay off debt. To be fair, the benefits can be both obvious and vague at the
same time. Optimizing a known bottleneck will surely improve the system, but how
much will it reduce the cost of customer acquisition or churn? Adding more testing to
product delivery pipelines should reduce defect rate and make product development
more efficient, but will it pay for itself in the long run? An ancient component works well
most of the time, but is impossible to debug when something goes wrong; will it require
less effort to research and rebuild it than playing whack-a-mole occasionally for the next
few years? Technical teams can usually describe their problems and solutions
accurately, but find it difficult to estimate effort and benefit; this imprecision weighs
heavily against deciding to pay down debt, and it's easy to default to features or ideas
with clear tangible upside. Organizations must resist the temptation to choose the
simple or easily justified decision, and by now they can afford to give technical teams
time to explore some problems without tangible upside.

Technical leadership would be wise to apply some fixed minimum amount of effort
toward research and improvement of existing components or processes; this should be
table stakes for an organization of non-trivial size. As a simple or small product, it’s
easy to unify a simple solution for a narrow segment of customers. As the organization
grows and the product grows or becomes a suite of products, so does the breadth of
customer type and thus the complexity that the organization must support. Without
reinforcement and investment in the logistics that connects a large organization, they
will not be able to take more market share without falling apart and losing it all. A
significant ongoing amount of investment in improving connections between the
product, technical groups, and non-technical groups is no longer optional under

24



exponential growth. To prioritize this effort, technical and non-technical teams must
teach and learn as equal partners. The technical paradox still applies; many of these
issues can still be simplified or negated entirely at a whiteboard with a simple product
tweak or minor change in organizational process, but it requires all parties to
understand the problem completely.

An underrated benefit of prioritizing technical debt is happiness and efficiency of
technical teams. Continued development and an increasingly complex product means
debt is still being created, and that's perfectly normal! More debt means technical work
is harder and less fun, but as the organization matures technical teams will expect their
work to be less frantic, not more, so despite continued acceleration in product
development the net amount of technical debt must stabilize and then reduce from this
point forward. Otherwise, an exponentially growing organization will simply collect debt
exponentially alongside customers until it splats on the ceiling. Balanced well, an
organization will feel that the growth in revenue, customer usage, and headcount will
directly correlate with improvements in quality and efficiency of the product and teams
working on it.

Example: Bug-Free Software
BuzzyBee’s bespoke AI is truly impressive, and the technology deserves its winning
share of the beehive predictive analytics market. Equally impressive, but much less
visible to customers, is the underlying data pipeline that receives, aggregates, and
stores a staggering amount of video, audio, and environmental sensor data. Without
this system, composed of many components, the AI would have nothing to analyze.
BuzzyBee’s technical team is justifiably proud of the data pipeline; they have spent
years solving a complex series of problems with a strict constraint of the AI’s low
tolerance for bad or missing data. The overarching design goal has been to eliminate
failure, and technical teams have succeeded to the point where the only failures
originate from hardware, not software.

Reliability in the face of messy and uncontrolled input is quite a feat of software
engineering, but at what cost? A low tolerance for error necessitates a high degree of
suspicion of input data, and corresponding rigor to detect and prevent edge cases that
the software isn’t designed to handle. As a result, a higher-than-average proportion of
the code in this system of components will be dedicated to defensive programming
relative to the business logic that drives the outcome a customer experiences. Over
several years, handling for edge cases accumulates to the point where, no matter how
well designed, components have a lot of complexity buried in the details. Even though

25



the outward appearance is a data pipeline that works spectacularly, the organization
has made a number of tradeoffs that might not be obvious.

The most important side effect is that complexity and subtlety, especially if accumulated
by years of minor improvements and fixes, are a huge magnet for hidden institutional
knowledge. If a new bug appears, it will always be fixed most efficiently by a person
who already knows how the component works. This is the most common cause of
knowledge silos, which become a huge risk to the organization if a critical system can
only be worked on by people who invented it or have logged hundreds of hours
maintaining it. If the organization assumes some fixed cost of maintenance based on
certain people being available, loss of a key person can blow up a bunch of unrelated
projects by forcing an organization to divert teams off-plan for far longer than expected.
The organization may get trapped in this cycle, never choosing to invest in knowledge
redundancy because there’s too much work to do. Lack of redundancy is a particularly
sneaky form of technical debt, not because the debt itself is large but because there’s
only one or two people who can pay it off.

Another side effect of systems that prioritize rigor and correctness is that the
mechanisms employed to guarantee these goals are typically not very interesting.
Clever, sure, but working on components like this isn’t typically enjoyable, especially for
new people trying to learn; morale is easily killed by doing something incorrectly over
and over for reasons that are almost impossible to intuit until you’re aware of them.
This is dangerous because it can quietly become irrecoverable; beware of technical
teams suggesting a full replacement because they hate or fear working on a
component. The effort required for someone new to wrangle the complexity of the old
component without guidance can be extremely high with almost zero improvement in
customer value. Similar to the example above, technical debt strikes again; a low
carrying cost on an increasingly large amount of debt isn’t so bad until paying it off
becomes necessary.

All that said, it is reasonable for BuzzyBee to choose a requirement of high reliability
from key components. If the pain of complexity comes from lack of flexibility, then
BuzzyBee should protect themselves by ensuring that a large swath of the team
understands this key system by investing in sharing the load of working on it over time.
Documentation is another obvious choice, but only to the extent that it notes decisions
and rationale and not an exhaustive listing of specific cases. A more difficult question
is: should the AI components reliant on the data be allowed to be fault-intolerant? This
would negate some of the pressure placed on the design of the data pipeline, but would
the reduction in effectiveness in analytics affect BuzzyBee’s market share more or less

26



than the risk of being one nasty bug away from blowing up an entire quarter’s worth of
features?

Example: Weight of Success
BuzzyBee just cannot stop growing! Technical teams aren’t worried about being only
one step ahead of the growth because they’ve built out rich monitoring and can scale
components dynamically to meet peaks in load. The biggest challenge is actually not
the technology or the product right now, it’s continuing to hit exponential growth targets.
BuzzyBee attacks this problem by increasing development effort to retain current
customers, upsell current customers, and the unique challenge of international
expansion to find more customers. These projects come with a lot of pressure from a
sales organization chasing ever-increasing expectations and only so many leads. The
roadmap is full, and there’s not a lot of room for error for technical teams and their
management.

BuzzyBee is a mature organization at this point, with all the associated support and
administration requirements. Customers expect simplicity and convenience from billing
and product support. Potential customers recognize the brand, and expect a polished
sales process that aligns with their confidence in BuzzyBee’s good reputation. Much
like the authentication and authorization features, an extremely high percentage of
customers will use or benefit from administrative features; the boring bits of the product
are consistently the most important or heavily used! BuzzyBee has a strong culture
around the quality of the AI, their key differentiator, and has under-invested in many of
the tools that connect the product to the other functions of the organization that rely on
information or administrative actions. This has been fine so far because internal users
doing admin or operations have learned as the product has grown, and technical teams
can advise on and execute rare requests to do something unique the product doesn’t
support.

As the international expansion rolls out, the growth engine cranks up yet another gear.
BuzzyBee starts peeling people off active projects to put out small fires around scale,
and every functional group starts hiring to support the growth. More users, more leads,
more customers, more, More, MORE! Of everything! Continued growth of an
organization will eventually expose inefficiencies; it’s easier to double headcount after 2
years and 20 people than 5 years and 200 people. BuzzyBee is about to take a big
gulp of champagne problems.

BuzzyBee’s AI requires a certain amount of data from each specific hive before it can
perform analysis, and the delay is anywhere usually hours but sometimes weeks. Once

27

https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Internationalization_and_localization


in a while, it doesn’t work at all. BuzzyBee is aware of the environmental factors that
cause this and experienced engineers can produce an estimate from instinct, but the
process usually works eventually. With tons of demos scheduled as leads come in hot,
the sales team is less tolerant of rescheduling demos for important or large potential
customers and so they lean on engineers to help them decide if the demo will be ready
in time and look good. Which feature should be delayed to support reasonable
questions from the sales team?

BuzzyBee’s technical teams often create and destroy testing environments where they
can deploy a full copy of the product. Once in a while, a team will brick their
environment but it happens infrequently enough that the infrastructure team uses a
manual override. Not only do all the new hires represent twice as many testing
environments, they’re even more likely to brick something because they’re less familiar
with the components. What won’t the infrastructure team be working on while they
spend a few hours a week mopping up the same messes?

BuzzyBee’s admin UI in the product is pretty rudimentary, but it works well enough for
creating new accounts for prospects and seeding them with some data. Veteran
salespeople know to keep profiles small and light to prevent wasted effort in the
backend, but the demo looks better with more data. New hires, ignorant of the side
effect, use the simple admin UI to overstuff demos for new leads. Will this extra data tip
the system past redline and into meltdown? What if the cleanup of a minor meltdown is
also a manual process?

These examples are all symptoms of the same under-investment in the glue that holds
the various parts of an organization together. Without deliberate and ongoing effort to
connect teams’ workflows, BuzzyBee’s functional groups will operate out of sync and
lose efficiency to the side effects of each others’ actions. The work to improve these
problems typically falls on technical teams, which raises a familiar question: can
BuzzyBee accurately balance the effort and reward of projects that are as different as
“add this feature” and “reduce errors from manual processes”?

28

https://en.wikipedia.org/wiki/Brick_(electronics)


Will it generate value?
Riding a wave of exponential growth and racking up huge revenue is certainly cause for
celebration! Building an organization that can market, sell, deliver, and maintain a
product means that shareholders will almost certainly receive a return on their money or
time invested. As exponential growth tapers off an organization’s valuation will come
from more than just predicted growth; financial success is inextricably tied to the health
of the organization and product because this is when technical debt starts to be felt in
financial terms. If an organization is trying to demonstrate a path to profitability, the
number of people required to supervise and keep-the-lights-on in the product is
suddenly going to become as important as new features that drive new revenue. The
amount of effort to support continued customer growth without interrupting delivery of
the product will put a ceiling on valuations, so it’s time for the organization to reap what
it has sown.

Investors are beginning to care about extracting value, not simply demonstrating it,
which changes many of the rules that the technical strategy thus far has been based on.
Furthermore, a successful product and growth engine doesn’t necessarily require as
much innovation to keep chugging along and product development yields diminishing
returns. There’s no need for agility when stability allows a mature organization to drive
profit growth by reducing new development and dominating current markets. However,
any strategy leveraging economy-of-scale is dependent on a product that can scale and
won’t impede ever-increasing sales. At this point, a product or group of products have
probably been under constant expansion and development for several years, so despite
any ideal of simplicity or appearance to users a product that has gotten this far is
inevitably complex. No one person knows how every component works, and turnover
over time has led to some complete gaps in knowledge. If a product needs to service
only 50% more customers to stop losing money but some critical component suddenly
can’t handle the growth, the halt in progress and delay in extracting value might be
measured in months or years with a corresponding reduction in the amount of value
extracted.

These forces add up to a set of rules entirely different from what the organization
started with. Technical teams in large organizations are no longer balancing agility
against future resilience, so new, different, and situationally-unique factors take
precedence at scale. Predictability, delivery time, cost, and a web of organizational
approvals each add their own axis of complexity. A decision that adds permanent
maintenance suddenly becomes tolerable if it eliminates a ton of effort to figure out what
the permanent fix would be and get it approved by a huge technical organization; the
incremental cost to hire staff in lower cost regions that will perform permanent

29



maintenance is a drop in the bucket of a multinational organization’s costs. Conversely,
large organizations seeking efficiency by cutting costs run the risk of losing the battle
with technical debt over time; a temporary boost in profit margin will erode over time as
debt accumulates. Organizations should be careful when constructing incentives for
decision-makers; which strategic principles should counterbalance the increasing
pressure of a fiduciary duty to maximize shareholder value?

Unfortunately, a large organization’s completely new set of problems and available
solutions will push much of the preceding concerns out of context; with large-scale
success comes the expiration of a philosophy balancing survival and potential.
Consider instead: should a successful large organization scale back investment and
growth to grind out consistent profit? Can shareholders tolerate the cost and risk of
continuing to innovate?

30


